Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We report on a search for sub-GeV dark matter (DM) particles interacting with electrons using the DAMIC-M prototype detector at the Modane Underground Laboratory. The data feature a significantly lower detector single rate (factor 50) compared to our previous search, while also accumulating a 10 times larger exposure of . DM interactions in the skipper charge-coupled devices (CCDs) are searched for as groups of two or three adjacent pixels with a total charge between 2 and . We find 144 candidates of and 1 candidate of , where 141.5 and 0.071, respectively, are expected from background. With no evidence of a DM signal, we place stringent constraints on DM particles with masses between 1 and interacting with electrons through an ultralight or heavy mediator. For large ranges of DM masses below , we exclude theoretically motivated benchmark scenarios where hidden-sector particles are produced as a major component of DM in the Universe through the freeze-in or freeze-out mechanisms.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Abstract The DArk Matter In CCDs at Modane (DAMIC-M) experiment is designed to search for light dark matter (mχ< 10 GeV/c2) at the Laboratoire Souterrain de Modane (LSM) in France. DAMIC-M will use skipper charge-coupled devices (CCDs) as a kg-scale active detector target. Its single-electron resolution will enable eV-scale energy thresholds and thus world-leading sensitivity to a range of hidden sector dark matter candidates. A DAMIC-M prototype, the Low Background Chamber (LBC), has been taking data at LSM since 2022. The LBC provides a low-background environment, which has been used to characterize skipper CCDs, study dark current, and measure radiopurity of materials planned for DAMIC-M. It also allows testing of various subsystems like readout electronics, data acquisition software, and slow control. This paper describes the technical design and performance of the LBC.more » « lessFree, publicly-accessible full text available November 1, 2025
- 
            Abstract CUPID, the CUORE Upgrade with Particle Identification, is a next-generation experiment to search for neutrinoless double beta decay ($$0\mathrm {\nu \beta \beta }$$ ) and other rare events using enriched Li$$_{2}$$ $$^{100}$$ MoO$$_{4}$$ scintillating bolometers. It will be hosted by the CUORE cryostat located at the Laboratori Nazionali del Gran Sasso in Italy. The main physics goal of CUPID is to search for$$0\mathrm {\nu \beta \beta }$$ of$$^{100}$$ Mo with a discovery sensitivity covering the full neutrino mass regime in the inverted ordering scenario, as well as the portion of the normal ordering regime with lightest neutrino mass larger than 10 meV. With a conservative background index of 10$$^{-4}$$ cts$$/($$ keV$$\cdot $$ kg$$\cdot $$ yr$$)$$ , 240 kg isotope mass, 5 keV FWHM energy resolution at 3 MeV and 10 live-years of data taking, CUPID will have a 90% C.L. half-life exclusion sensitivity of$$1.8\cdot 10^{27}$$ yr, corresponding to an effective Majorana neutrino mass ($$m_{\beta \beta }$$ ) sensitivity of 9–15 meV, and a$$3\sigma $$ discovery sensitivity of$$1\cdot 10^{27}$$ yr, corresponding to an$$m_{\beta \beta }$$ range of 12–21 meV.more » « lessFree, publicly-accessible full text available July 1, 2026
- 
            Abstract An array of twelve 0.28 kg lithium molybdate (LMO) low-temperature bolometers equipped with 16 bolometric Ge light detectors, aiming at optimization of detector structure for CROSS and CUPID double-beta decay experiments, was constructed and tested in a low-background pulse-tube-based cryostat at the Canfranc underground laboratory in Spain. Performance of the scintillating bolometers was studied depending on the size of phonon NTD-Ge sensors glued to both LMO and Ge absorbers, shape of the Ge light detectors (circular vs. square, from two suppliers), in different light collection conditions (with and without reflector, with aluminum coated LMO crystal surface). The scintillating bolometer array was operated over 8 months in the low-background conditions that allowed to probe a very low, μBq/kg, level of the LMO crystals radioactive contamination by 228 Th and 226 Ra.more » « less
- 
            Abstract CUPID is a next-generation bolometric experiment aiming at searching for neutrinoless double-beta decay with ∼250 kg of isotopic mass of 100 Mo. It will operate at ∼10 mK in a cryostat currently hosting a similar-scale bolometric array for the CUORE experiment at the Gran Sasso National Laboratory (Italy). CUPID will be based on large-volume scintillating bolometers consisting of 100 Mo-enriched Li 2 MoO 4 crystals, facing thin Ge-wafer-based bolometric light detectors. In the CUPID design, the detector structure is novel and needs to be validated. In particular, the CUORE cryostat presents a high level of mechanical vibrations due to the use of pulse tubes and the effect of vibrations on the detector performance must be investigated. In this paper we report the first test of the CUPID-design bolometric light detectors with NTD-Ge sensors in a dilution refrigerator equipped with a pulse tube in an above-ground lab. Light detectors are characterized in terms of sensitivity, energy resolution, pulse time constants, and noise power spectrum. Despite the challenging noisy environment due to pulse-tube-induced vibrations, we demonstrate that all the four tested light detectors comply with the CUPID goal in terms of intrinsic energy resolution of 100 eV RMS baseline noise. Indeed, we have measured 70–90 eV RMS for the four devices, which show an excellent reproducibility. We have also obtained high energy resolutions at the 356 keV line from a 133 Ba source, as good as Ge semiconductor γ detectors in this energy range.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
